Data-guided statistical sparse measurements modeling for compressive sensing

نویسنده

  • Tal Shimon Schwartz
چکیده

Digital image acquisition can be a time consuming process for situations where high spatial resolution is required. As such, optimizing the acquisition mechanism is of high importance for many measurement applications. Acquiring such data through a dynamically small subset of measurement locations can address this problem. In such a case, the measured information can be regarded as incomplete, which necessitates the application of special reconstruction tools to recover the original data set. The reconstruction can be performed based on the concept of sparse signal representation. Recovering signals and images from their sub-Nyquist measurements forms the core idea of compressive sensing (CS). In this work, a CS-based data-guided statistical sparse measurements method is presented, implemented and evaluated. This method significantly improves image reconstruction from sparse measurements. In the data-guided statistical sparse measurements approach, signal sampling distribution is optimized for improving image reconstruction performance. The sampling distribution is based on underlying data rather than the commonly used uniform random distribution. The optimal sampling pattern probability is accomplished by learning process through two methods direct and indirect. The direct method is implemented for learning a nonparametric probability density function directly from the dataset. The indirect learning method is implemented for cases where a mapping between extracted features and the probability density function is required. The unified model is implemented for different representation domains, including frequency domain and spatial domain. Experiments were performed for multiple applications such as optical coherence tomography, bridge structure vibration, robotic vision, 3D laser range measurements and fluorescence microscopy. Results show that the data-guided statistical sparse measurements method significantly outperforms the conventional CS reconstruction performance. Data-guided statistical sparse measurements method achieves much higher reconstruction signal-to-noise ratio for the same compression rate as the conventional CS. Alternatively, Data-guided statistical sparse measurements method achieves similar reconstruction signal-to-noise ratio as the conventional CS with significantly fewer samples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Manifold-Based Signal Recovery and Parameter Estimation from Compressive Measurements

A field known as Compressive Sensing (CS) has recently emerged to help address the growing challenges of capturing and processing high-dimensional signals and data sets. CS exploits the surprising fact that the information contained in a sparse signal can be preserved in a small number of compressive (or random) linear measurements of that signal. Strong theoretical guarantees have been establi...

متن کامل

Compressive Sensing for Cluster Structured Sparse Signals: Variational Bayes Approach

Compressive Sensing (CS) provides a new paradigm of sub-Nyquist sampling which can be considered as an alternative to Nyquist sampling theorem. In particular, providing that signals are with sparse representations in some known space (or domain), information can be perfectly preserved even with small amount of measurements captured by random projections. Besides sparsity prior of signals, the i...

متن کامل

New Analysis of Manifold Embeddings and Signal Recovery from Compressive Measurements

Compressive Sensing (CS) exploits the surprising fact that the information contained in a sparse signal can be preserved in a small number of compressive, often random linear measurements of that signal. Strong theoretical guarantees have been established concerning the embedding of a sparse signal family under a random measurement operator and on the accuracy to which sparse signals can be rec...

متن کامل

A Distributed Compressive Sensing Technique for Data Gathering in Wireless Sensor Networks

Compressive sensing is a new technique utilized for energy efficient data gathering in wireless sensor networks. It is characterized by its simple encoding and complex decoding. The strength of compressive sensing is its ability to reconstruct sparse or compressible signals from small number of measurements without requiring any a priori knowledge about the signal structure. Considering the fac...

متن کامل

Quantized Compressive Sensing Measurement Based on Improved Subspace Pursuit Algorithm

Recent research results in compressive sensing have shown that sparse signals can be recovered from a small number of random measurements. Whether quantized compressive measurements can provide an efficient representation of sparse signals in information-theoretic needs discuss. In this paper, the distortion rate functions are used as a tool to research the quantizing compressive sensing measur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013